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Let Y be a random variable with cdf F(y) = P(Y < y) and F =1 — F its survival function.
> Y models the loss of a financial asset or the rainfall height.
> Risk measure : cover against a large increase of the response Y values.
> Quantile at level o € (0,1) satisfies P(Y < g(a)) = q, i.e., g(a) = F~*(a) (generalized inverse).

> Extremes : & — 1 and Y heavy-tailed i.e. IiT F(tx)/F(t) = x Y7 (regular variation).
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Functional covariate

Y = max:e7 log(p:/pe—1) where p; is the price value of an asset at time t and 7 large time domain.
> Include a massive auxiliary information — functional covariate.
> X € H with H separable Hilbert space, e.g., L*([0,1]).
> In practice: 60 x 24 = 1440 and X € R4° stockprice per minute during even days.
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Dimension reduction

Let Y with cdf F =1 — F and F its survival function. Let X € H with H separable Hilbert space.

Classical goal: Statistical inference of the risk measure (e.g., quantile) of Y conditionally to X for large
threshold (o — 1).

# Hindrances: Computational cost; Double sparsity: Curse of dimension + Extremes.

= Substitute the covariate X € H by a projection (w, X)y € R.

= FEPLS method: find a direction in H that best explains the extreme behaviour of Y according to
X. PLS is adaptated to the case where X is functional and F is regularly varying.



Theoretical FEPLS

Assume that Y is heavy-tailed (but not too much) with tail index v < 1 so that Y is integrable.

# Tail-moment : my(y) := E(W1yys,;) for large y > 0 and W generical random variable.

w FEPLS method: argmax Cov ((w,X), Y | Y > y) with y — +oc.

[lwllh=1

v Unique explicit solution: v(y)/|lv(y)|| with v(y) = F(y)mxy(y) — mx(y)my(y).

> We stay inside Span(X) C H. Hence we consider, for ¢ : R — R test regularly varying,

Vo (y) = mx,v) () = Es(Xo(Y)1ysy))-

Here, Ez denotes the integral in the sense of Bochner/Pettis (for Banach-valued rvs).



FEPLS inference

Let an iid sample (X, Y;) C H x R. We seek to estimate the FEPLS: f, = v, /||v,||.

> Theoretical target: v, (y) = Es(Xo(Y)1l{y>,}) with large y > 0.
> Empirization: U,(ya) = 2 37 Xip(Yi)l{y,>y,} with deterministic y, > 1.

> Interpretation: empirical FEPLS = linear comb. of X; with associated Y; in the distribution tail +

weights to each extreme observations through ¢.

> Threshold choice: Assume nP(Y > y,) > 1 so that the average number of extreme observations
Yi > y, increases with the sample size (the threshold must not grow too fast so that we dispose of
data for the inference).



Theoretical guarantees

We express our results under an inverse regression model. Denote f, = v, /|| v, ||.

> Inverse model: X = g(Y)3 + & with:
e g : R — R link function regularly varying, e.g., g(t) = t*, K > 0.
e 3 a deterministic unit vector in H. Span(/3) is the space of dimension reduction.

e ¢ is a random noise in H, e.g., Brownian motion etc...

> Inspired from Sliced Inverse Regression (SIR).

> Against the philo. of Fisher : Cook (2007) "Fisher Lecture: Dimension Reduction in Regression".

Heuristic | : If e L Y and Eg(e) = 0, then f,(y) = 3 for any test function ¢ regularly varying.

Heuristic 1l : More generally, if € has small contributions in the extremes of Y. Then,

fo(y) —— B.
y—+oo



Limit results

Let y, >> 1 deterministic with nF(y,) > 1 and f, := ¥, /|0, ||. Under the model X = g(Y)B + &,

Consistency | : For some speed rate 6, > 1,

oo ||folyn) = B|,, —— 0.

n——+oo

> The rate §, depends on the threshold y,, on the tail-index of Y, on the link function g, on the
integrability order of the noise & but not on the test function/weight .

Consistency Il : Moreover,

Cov(Y, (Fo(ya), X) | Y > ya)

| T Cov (Y, (8, X) | Y = 1) s

> Projecting onto Span(f:,,(y,,)) instead of Span(3) asymptotically preserves the same quantity of
extréme information.



Sketch of the proof

Let y, > 1 deterministic with nF(y,) > 1 and £, := 0,,/||0, || the empirical FEPLS direction.

Model X = g(Y)3 + € where ||8||n = 1, F € RV_1 (4+00), g € RV.(+00). Let ¢ € RV, (+00).
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Goal: ||fcp - 5“12-1 =2(1- <‘7<p75>2/||‘7¢||12-l) m 0 where Uy, := fix,(v) = Mypg(v)B + My(v)e.

After some calculations, this boils down to: M, (v)e,8),,/Mpg(v) = 0 and || My(v)l|H/Mygv) — 0.
Tools: Chebychev's ineq. + appropriate speed rates. In particular, one needs to control the variance.

e Univariate regular variation results such as Karamata representation. For instance, yielding:

= m Y)(_Vn) . .
nF(y, TegMUn] 1) is asymptotically normal.
() (msog(v)(yn) ymp Y

e Functional part: if Wi, W> € H independent, then E({(W1, Wa)y) = (Eg(Wh), Es(Wa)) 4.



lllustration on synthetic data

Estimation of the FEPLS with data generated under the inverse model and H = L*(]0, 1]):

X =g(Y)B+ e, with 3 € H deterministic to be estimated and € € H random noise.

- ¥n = Yn—k+1.0 order stat. and choice of k > 5.

151 - Blue : B(t) := v/2sin(27t), t € [0,1].
104 - Orange : estimation of (3.
- Blue area : confidence band; top 5 — 95% of
051 the values among 500 Monte-Carlo iterations.
0.0
Choice of the model:
] - Y with Burr distribution.
—1.01 - Link function: g polynomial.
_154 - Noise: e fractional Brownian motion

0 01 02 03 04 05 06 07 08 09 1 depending on Y (Hurst parameter = 1/3).
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Illustration on financial data

Comparison of quantiles: Y |X = x vs Y[(X, ) = (x, f,).
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Estimation of quantiles with Nadaraya-Watson
weights at some function point x € H.

Consider x’ # f, and
x" € {function 1, function 2}.

Projecting on ﬁp should give "lowérror.

Projecting on x’ instead of f; should give
higher error.

Relative error in percentage.
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