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Extreme risk

Let Y be a random variable with cdf F (y) = P(Y ≤ y) and F̄ = 1 − F its survival function.

▷ Y models the loss of a financial asset or the rainfall height.

▷ Risk measure : cover against a large increase of the response Y values.

▷ Quantile at level α ∈ (0, 1) satisfies P(Y ≤ q(α)) = α, i.e., q(α) = F−1(α) (generalized inverse).

▷ Extremes : α → 1 and Y heavy-tailed i.e. lim
t→+∞

F̄ (tx)/F̄ (t) = x−1/γ (regular variation).
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Functional covariate

Y = maxt∈T log(pt/pt−1) where pt is the price value of an asset at time t and T large time domain.

▷ Include a massive auxiliary information −→ functional covariate.

▷ X ∈ H with H separable Hilbert space, e.g., L2([0, 1]).

▷ In practice: 60 × 24 = 1440 and X ∈ R1440 stockprice per minute during even days.
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Dimension reduction

Let Y with cdf F = 1 − F̄ and F̄ its survival function. Let X ∈ H with H separable Hilbert space.

Classical goal: Statistical inference of the risk measure (e.g., quantile) of Y conditionally to X for large
threshold (α → 1).

✖ Hindrances: Computational cost; Double sparsity: Curse of dimension + Extremes.

➥ Substitute the covariate X ∈ H by a projection ⟨w ,X ⟩H ∈ R.

➥ FEPLS method: find a direction in H that best explains the extreme behaviour of Y according to
X . PLS is adaptated to the case where X is functional and F̄ is regularly varying.
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Theoretical FEPLS

Assume that Y is heavy-tailed (but not too much) with tail index γ < 1 so that Y is integrable.

✍ Tail-moment : mW (y) := E(W 1{Y>y}) for large y > 0 and W generical random variable.

☞ FEPLS method: argmax
∥w∥H=1

Cov
(
⟨w ,X ⟩,Y | Y ≥ y

)
with y → +∞.

✔ Unique explicit solution: v(y)/∥v(y)∥ with v(y) = F̄ (y)mXY (y)− mX (y)mY (y).

▷ We stay inside Span(X ) ⊂ H. Hence we consider, for φ : R → R test regularly varying,

vφ(y) = mXφ(Y )(y) = EB(Xφ(Y )1{Y>y}).

Here, EB denotes the integral in the sense of Bochner/Pettis (for Banach-valued rvs).
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FEPLS inference

Let an iid sample (Xi ,Yi ) ⊂ H × R. We seek to estimate the FEPLS: fφ = vφ/∥vφ∥.

▷ Theoretical target: vφ(y) = EB(Xφ(Y )1{Y>y}) with large y > 0.

▷ Empirization: v̂φ(yn) = 1
n

∑n
i=1 Xiφ(Yi )1{Yi>yn} with deterministic yn ≫ 1.

▷ Interpretation: empirical FEPLS = linear comb. of Xi with associated Yi in the distribution tail +
weights to each extreme observations through φ.

▷ Threshold choice: Assume nP(Y > yn) ≫ 1 so that the average number of extreme observations
Yi > yn increases with the sample size (the threshold must not grow too fast so that we dispose of
data for the inference).
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Theoretical guarantees

We express our results under an inverse regression model. Denote fφ = vφ/∥vφ∥.

▷ Inverse model: X = g(Y )β + ε with:

• g : R → R link function regularly varying, e.g., g(t) = tκ, κ > 0.

• β a deterministic unit vector in H. Span(β) is the space of dimension reduction.

• ε is a random noise in H, e.g., Brownian motion etc...

▷ Inspired from Sliced Inverse Regression (SIR).

▷ Against the philo. of Fisher : Cook (2007) "Fisher Lecture: Dimension Reduction in Regression".

Heuristic I : If ε ⊥ Y and EB(ε) = 0, then fφ(y) = β for any test function φ regularly varying.

Heuristic II : More generally, if ε has small contributions in the extremes of Y . Then,

fφ(y)
H−−−−→

y→+∞
β.
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Limit results

Let yn ≫ 1 deterministic with nF̄ (yn) ≫ 1 and f̂φ := v̂φ/∥v̂φ∥H . Under the model X = g(Y )β + ε,

Consistency I : For some speed rate δn ≫ 1,

δn ·
∥∥f̂φ(yn)− β

∥∥
H

P−−−−→
n→+∞

0.

▷ The rate δn depends on the threshold yn, on the tail-index of Y , on the link function g , on the
integrability order of the noise ε but not on the test function/weight φ.

Consistency II : Moreover,

δn

∣∣∣Cov(Y , ⟨f̂φ(yn),X ⟩ | Y ≥ yn)

Cov (Y , ⟨β,X ⟩ | Y ≥ yn)
− 1

∣∣∣ −−−−→
n→+∞

0.

▷ Projecting onto Span(f̂φ(yn)) instead of Span(β) asymptotically preserves the same quantity of
extrême information.
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Sketch of the proof

Let yn ≫ 1 deterministic with nF̄ (yn) ≫ 1 and f̂φ := v̂φ/∥v̂φ∥H the empirical FEPLS direction.

Model X = g(Y )β + ε where ∥β∥H = 1, F̄ ∈ RV− 1
γ
(+∞), g ∈ RVκ(+∞). Let φ ∈ RVτ (+∞).

Goal: ∥f̂φ − β∥2
H = 2(1 − ⟨v̂φ, β⟩2/∥v̂φ∥2

H) −−−−→
n→+∞

0 where v̂φ := m̂Xφ(Y ) = m̂φg(Y )β + m̂φ(Y )ε.

After some calculations, this boils down to: m̂⟨φ(Y )ε,β⟩H /mφg(Y ) → 0 and ∥m̂φ(Y )ε∥H/mφg(Y ) → 0.

Tools: Chebychev’s ineq. + appropriate speed rates. In particular, one needs to control the variance.

• Univariate regular variation results such as Karamata representation. For instance, yielding:√
nF̄ (yn)

(
mφg(Y )(yn)

mφg(Y )(yn)
− 1

)
is asymptotically normal.

• Functional part: if W1,W2 ∈ H independent, then E(⟨W1,W2⟩H) = ⟨EB(W1),EB(W2)⟩H .
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Illustration on synthetic data

Estimation of the FEPLS with data generated under the inverse model and H = L2([0, 1]):

X = g(Y )β + ε, with β ∈ H deterministic to be estimated and ε ∈ H random noise.
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- yn = Yn−k+1:n order stat. and choice of k ≥ 5.

- Blue : β(t) :=
√

2 sin(2πt), t ∈ [0, 1].

- Orange : estimation of β.

- Blue area : confidence band; top 5 − 95% of
the values among 500 Monte-Carlo iterations.

Choice of the model:

- Y with Burr distribution.

- Link function: g polynomial.

- Noise: ε fractional Brownian motion
depending on Y (Hurst parameter = 1/3).

10



Illustration on financial data

Comparison of quantiles: Y |X = x vs Y |⟨X , f̂φ⟩ = ⟨x , f̂φ⟩.
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- Estimation of quantiles with Nadaraya-Watson
weights at some function point x ∈ H.

- Consider x ′ ̸= f̂φ and
x ′ ∈ {function 1, function 2}.

- Projecting on f̂φ should give ’low’ error.

- Projecting on x ′ instead of f̂φ should give
higher error.

- Relative error in percentage.
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