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Testing for stochastic independence

Problem: Let X = (X1, . . . ,Xd)
⊤ be a d-variate random vector. We are interested in testing the null

Hd : X1, . . . ,Xd are mutually independent

based on an i.i.d. sample X1, . . . ,Xn of X with Xi = (Xi1, . . . ,Xid)
⊤,

Vast literature:

• The bivariate case d = 2: Hoeffding (1948), Feuerverger (1993), . . .

• The fixed d-case: Blum, Kiefer, Rosenblatt (1961), Deheuvels (1979), Genest and Rémillard
(2004), Székely et al. (2007), Genest et al. (2019), . . .

• The d = d(n) → ∞ case: ongoing research in recent years.
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The high dimensional regime

Existing literature in the high dimensional regime typically uses the proxy hypothesis

H2 : X1, . . . ,Xd are pairwise independent,

with Hd ⇒ H2, but not vice versa.

(Testing for H2 amounts to simultaneously testing
(
d
2

)
different sub-hypotheses of Hd .)

Heuristic motivation:

• If X is Gaussian, then H2 ⇔ Hd (Schott, Biometrika 2005; Cai and Liang, AoS, 2011; . . . )

• Practically relevant alternatives from ¬Hd should typically involve pairwise dependencies (main
effect of joint dependence).

Hence, we should design test statistics that are sensitive towards deviations from H2.
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Testing for pairwise independence in high dimensions

Bivariate association/dependence measures: Pearson Correlation, Kendall’s tau, Spearman’s rho,
Distance covariance, . . . , e.g., for 1 ≤ p < q ≤ d ,

τ̂p,q :=
(
n
2

)−1 ∑
1≤i<j≤n

sign(Xip − Xjp) · sign(Xiq − Xjq).

• Han, Chen, Liu (Biometrika, 2017): Maximum of linear rank statistics and (squared) non-
degenerate rank-based U-statistics (e.g. Kendall’s τ). Test is based on a Gumbel approximation:

9n(n − 1)
2(2n + 5)

max
1≤p<q≤d

τ̂2
p,q − 4 log d + log log d ⇝H2 Gumbel

• Leung, Drton (AoS, 2018): Sum of (squared) rank-based (possibly degenerate) U-statistics (e.g.
Kendall’s τ). Test is based on a normal approximation:

9n
2d

( ∑
1≤p<q≤d

τ̂2
p,q −

2(2n + 5)
9n(n − 1)

)
⇝H2 N (0, 1)

The tests are inconsistent for H2, as τ = 0 does not imply bivariate independence (Yao, Shang, Shao
(JRSSB, 2018): similar as Leung, Drton (2018), but with distance covariances).
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High-dimensions, independence and copulas

Goal: try to overcome the shortcomings from the pairwise methods by considering the problem of
testing for independence from a copula perspective.

• Quite surprisingly: there is no copula-related asymptotic theory or specific methodology for the
high dimensional regime d = d(n) → ∞ (to the best of our knowledge).

• Origin of statistics for copulas: Deheuvels (1979, 1981a, 1981b) - Independence testing!
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The copula approach to stochastic dependence

Sklar’s Theorem: if X = (X1, . . . ,Xd)
⊤ ∼ F has continuous marginal c.d.f.s F1, . . . ,Fd , then there

exists an unique copula C : [0, 1]d → [0, 1] such that

F (x) = C(F1(x1), . . . ,Fd(xd)), x = (x1, . . . , xd) ∈ Rd .

Moreover, C(u) = P(U ≤ u), where Up = Fp(Xp) ∼ Unif(0, 1) for p = 1, . . . , d .

Consequence for independence testing: in case of continuous marginal c.d.f.s,

Hd : X1, . . . ,Xd are mutually independent ⇐⇒ Hd : C = Πd .

Here, Πd(u) =
∏d

p=1 ud denotes the independence copula.
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Decomposing mutual independence Hd in terms of margins of C

For k ∈ {2, . . . , d}, let

Hk :

X1, . . . ,Xd are k-wise independent, i.e.,

any subvector of length k has mutual independent components.

Note that Hd ⇒ · · · ⇒ Hk ⇒ · · · ⇒ H3 ⇒ H2.

Characterization: In case of continuous marginal cdfs, we may rewrite

Hk : CA = Πk for all A ⊂ {1, . . . , d} with |A| = k,

where CA(u) = C(uA) = P(Up ≤ up for all p ∈ A) denotes the A-margin of C .

The validity of Hk may hence be assessed based on a nonparametric estimator of C .
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Nonparametric estimation of C : the empirical copula

The empirical copula: Recalling C(u) = P(Ui ≤ u) with Uip = Fp(Xip) suggests to define

Ĉn(u) =
1
n

n∑
i=1

1{Ûi ≤ u},

where Ûip = F̂np(Xip) =
1

n+1

∑n
j=1 1{Xjp ≤ Xip} =

Rip

n+1 , with Rip the rank of Xip among X1p, . . . ,Xnp.

Fixed-d case: Ĉn is a strongly consistent estimator of any C as n → ∞. Under smoothness conditions
on C (Rüschendorf, 1976; . . . , Segers, 2012; . . . ), with GC a continuous Gaussian process on [0, 1]d

with covariance Cov(GC (u),GC (v)) = C(u ∧ v)− C(u)C(v),{√
n(Ĉn(u)− C(u))

}
u
⇝ {G′

C (u)}u = {GC (u)−
d∑

j=1

Ċj(u)GC (u j)}u in (ℓ∞([0, 1]d), ∥ · ∥∞)

Testing for independence of a subvector XA: use Sn,A = ∥
√
n((Ĉn)A − ΠA)∥⇝H ∥(G′

Π)A∥. However,
the weak limits will be dependent, which complicates aggregation over different sets A.
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Aggregation based on Deheuvel’s trick: the Moebius transformation

For a real-valued function H on [0, 1]d , the mapping H 7→
(
MA(H)

)
A⊂{1,...,d}:2≤|A|≤d

with

MA(H)(u) =
∑
B⊂A

(−1)|A\B|H(uB)
∏

j∈A\B

uj .

is called the Moebius transformation of H.

Hk ⇐⇒ MA(C) ≡ 0 for all A ⊂ {1, . . . , d} with 2 ≤ |A| ≤ k.

Significant deviations of MA(Ĉn) from zero indicate dependence in XA. Assessing significance (d fixed):
√
nMA(Ĉn) =

√
n{MA(Ĉn)−MA(Π)} = MA(

√
n(Ĉn − Π))⇝H MA(GΠ) =: MA
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The Moebius transformation of the empirical copula

In then the fixed-d case and under H,

Mn,A =
√
nMA(Ĉn)⇝H MA

Here, by a straightforward calculation,

Mn,A =
1√
n

n∑
i=1

∏
p∈A

(
1{Rip ≤ (n + 1)up} − up

)
.

The weak convergence holds jointly in A ⊂ {2, . . . , d}, and the Gaussian limit process satisfies

Cov(MA(u),MA′(v)) = 1{A=A′}
∏
p∈A

(up ∧ vp − upvp).

The weak limits are independent over A! Aggregation by sum/max functionals should yield feasible
limits (Deheuvels, 1981; Genest and Rémillard, 2004).
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Building test statistics for Hk from Mn,A

As in Genest and Rémillard (2004), we assess non-independence of XA by Cramér-von Mises statistics:

SM
n,A =

∫
[0,1]|A|

M2
n,A(u) dΠA(u)⇝H

∫
[0,1]|A|

M2
A(u) dΠA(u).

After a slight redefinition of Mn,A (such that the process is centred), we obtain the representation

SM
n,A =

1
n

n∑
i,j=1

∏
p∈A

I
(p)
i,j ,

where

I
(p)
i,j =

2n + 1
6n

+
Rip(Rip − 1)
2n(n + 1)

+
Rjp(Rjp − 1)
2n(n + 1)

− max(Rip,Rjp)

n + 1
.

Deviations of Hk will be measured by sum aggregation (akin to Leung and Drton (2018) for k = 2):

Tn(k) =
∑

A⊂{1,...,d}
|A|=k

SM
n,A, 2 ≤ k ≤ d .
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Towards asymptotics of sum aggregation

The heuristics from the fixed d case suggest a (joint) normal approximation for

Tn(k) =
∑

A⊂{1,...,d}
|A|=k

∥Mn,A∥2
L2([0,1]k ) =

∑
A⊂{1,...,d}

|A|=k

SM
n,A =

∑
A⊂{1,...,d}

|A|=k

1
n

n∑
i,j=1

∏
p∈A

I
(p)
i,j , 2 ≤ k ≤ d .

Proposition (Bücher and P., 2024)
Under Hk , we have, for all A ⊂ {1, . . . , d} with |A| = k,

µn(k) := E[SM
n,A] =

(
1
6
− 1

6n

)k

+ (n − 1)
(−1

6n

)k

,

σ2
n(k) := Var(SM

n,A) ∼
2

90k
.

Explicit formulas for σ2
n(k) are available for k ∈ {2, 3}.
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Weak convergence of Tn(k)

Introduce scaling sequences:

Tn(k) :=
∑
|A|=k

∥Mn,A∥2
L2([0,1]k ), νn(k) :=

(
d
k

)
µn(k), δ̄2

n(k) :=
(
d
k

)
σ2
n(k), δ2

n(k) :=
(
d
k

) 2
90k

.

Theorem (Bücher and P., 2024)
Under Hd , if d = dn → ∞, we have

Tn(2)− νn(2)
δn(2)

d−−−−→
n→+∞

N (0, 1).

Moreover, for fixed m ∈ {3, 4, . . . }, if 1 ≪ dn ≪ n
1

m−1 , we have(
Tn(2)− νn(2)

δn(2)
, . . . ,

Tn(m)− νn(m)

δn(m)

)
d−−−−→

n→+∞
N (0, 1)⊗(m−1).

As a consequence,

T̄n(m) =
1√

m − 1

m∑
k=2

Tn(k)− νn(k)

δn(k)
d−−−−→

n→+∞
N (0, 1).

The same results are true for δ̄n instead of δn. 13



Remarks on the weak convergence of Tn(k)

• Straightforward test: Reject Hm iff T̄n(m) > u1−α = Φ−1
N (0,1)(1 − α).

• The computational cost to calculate T̄n(m) is Θ(mn2dm).

• No growth conditions must be put on d = dn for k = 2; this is akin to Leung and Drton (2018).

• For the weak limit result, it actually suffices to be under H4m−3 instead of Hd .

• The proof is based on a reduction to centred summands S̃M
n,A, on a reduction to summands I

(p)
i,j

with i ̸= j , and finally on a central limit theorem for martingale arrays; with the sum over A
restricted to maxA ≤ r ∈ {k, . . . , d} and with filtration Fn,r = σ(Uip : 1 ≤ i ≤ n, 1 ≤ p ≤ r).

• Also works for k := kn for some regime derived from Stirling’s approximation.
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Finite sample results

We study finite-sample rejection probabilities of the following tests:

• For k ∈ {2, 3, 4}, let Sk denote the test

reject Hk if
Tn(k)− νn(k)

δn(k)
> 1.645 = u0.95.

• For m ∈ {3, 4}, let Tm denote the test

rejects Hm if T̄n(m) =
1√

m − 1

m∑
k=2

Tn(k)− νn(k)

δn(k)
> 1.645 = u0.95.
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Empirical rejections probabilities in % under mutual independence

Asymptotic variance scaling

Test n \ d 4 8 16 32 64 128 256
S2 4.8 1.6 2.8 2.6 3.2 2.8 3.0
S3 2.2 3.6 6.2 9.4 19.8 29.0 31.4
T3 16 1.6 1.2 1.6 6.0 10.0 18.6 23.8
S4 2.2 18.2 29.4 34.4 43.4 46.0 42.4
T4 2.4 11.4 24.2 30.6 39.8 45.4 42.0
S2 4.0 5.4 3.0 5.0 3.2 4.2 4.0
S3 5.0 4.2 5.0 10.8 15.6 19.4 27.8
T3 32 4.0 3.4 2.6 6.2 8.0 9.8 19.0
S4 6.6 13.4 26.6 40.2 44.8 42.6 46.6
T4 4.4 9.6 18.0 36.0 42.4 40.8 45.8
S2 6.0 5.8 6.6 4.6 4.4 3.2 4.6
S3 5.0 4.2 6.2 6.2 9.6 13.6 24.0
T3 64 5.0 4.2 4.4 3.8 4.8 8.6 14.8
S4 4.8 9.0 25.6 33.4 41.8 45.0 47.2
T4 5.4 7.2 17.8 29.8 39.2 43.2 46.4
S2 6.8 4.0 5.8 4.8 5.2 5.8 4.4
S3 6.6 4.8 4.2 7.8 6.0 10.8 15.0
T3 128 6.2 3.6 4.2 5.6 4.6 6.0 9.2
S4 6.6 10.4 22.0 30.0 36.6 43.2 46.8
T4 5.8 6.8 13.6 25.2 33.2 40.2 44.6 16



The Romano-Siegel Model

• Let Z1,Z2,Z3 iid standard normal random variables. Define

X1 = |Z1| · sign(Z2Z3), X2 = Z2, X3 = Z3.

• (X1,X2,X3) exhibits pairwise independence but not mutual independence.

• Generating Z4,Z5,Z6 iid N (0, 1) random variables independently of (Z1,Z2,Z3), we duplicate
step 1 to construct X4,X5,X6. Etc...

• Example d = 9

X1,X2,X3, X4,X5,X6, X7,X8,X9

typical triplets: (X1,X2,X3), (X1,X4,X5), (X1,X4,X7)

• Out of the
(
d
3

)
triplets, only d/3 are not independent, which is a proportion of O(d−2). The tests’

power should hence be decreasing in d .
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Empirical rejections probabilities in % in the Romano-Siegel Model

Finite variance scaling

Test n \ d 3 6 15 30 63 126 255
S2 3.6 6.8 5.2 4.6 4.0 7.0 2.8
S3 16 16.6 23.4 26.4 29.4 32.4 33.8 53.4
T3 12.6 13.2 15.0 20.0 24.2 27.6 22.4
S2 2.2 4.8 5.0 3.6 4.2 5.4 2.4
S3 32 82.4 57.6 39.8 34.2 36.2 33.6 98.8
T3 45.8 32.6 22.2 20.4 24.2 24.4 98.2
S2 2.2 5.2 3.6 3.8 4.6 6.8 4.2
S3 64 100.0 100.0 84.8 63.8 46.2 37.2 100.0
T3 100.0 90.4 60.6 41.6 30.8 26.6 100.0
S2 0.8 3.6 4.2 4.0 5.0 4.8 3.4
S3 128 100.0 100.0 100.0 99.2 85.6 62.4 100.0
T3 100.0 100.0 99.2 91.8 66.8 46.4 100.0
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Thank you!

Fixed d :

▷ P. Deheuvels (1981). An asymptotic decomposition for multivariate distribution-free tests of independence. Journal of
Multivariate Analysis 11, 102–113.

▷ C. Genest and B. Rémillard (2004). Tests of independence and randomness based on the empirical copula process.
Test 13, 335–370.

Increasing d :

▷ D. Leung. and M. Drton (2018). Testing independence in high dimensions with sums of rank correlations. Annals of
Statistics 46, 280–307.

▷ F. Han, S. Chen and H. Liu (2017). Distribution-free tests of independence in high dimensions. Biometrika 104,
813–828.

▷ S. Yao, X. Zhang and X. Shao (2018). Testing mutual independence in high dimension via distance covariance.
Journal of the Royal Statistical Society Series B (Statistical Methodology) 80, 455–480.

This talk:

▷ A. Bücher and C. Pakzad (2024). Testing for independence in high dimensions based on empirical copulas. Annals of
Statistics.
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