Independence testing in high dimension with empirical copulas

Cambyse Pakzad , https://cpakzad.github.io

Problem: Let $\mathbf{X} = (X_1, \dots, X_d)^{\top}$ be a *d*-variate random vector. We are interested in testing the null

 $H_d: X_1, \ldots, X_d$ are *mutually* independent

based on an i.i.d. sample X_1, \ldots, X_n of X with $X_i = (X_{i1}, \ldots, X_{id})^\top$,

Vast literature:

- The bivariate case d = 2: Hoeffding (1948), Feuerverger (1993), ...
- The fixed *d*-case: Blum, Kiefer, Rosenblatt (1961), Deheuvels (1979), Genest and Rémillard (2004), Székely et al. (2007), Genest et al. (2019), ...
- The $d = d(n) \rightarrow \infty$ case: ongoing research in recent years.

Existing literature in the high dimensional regime typically uses the proxy hypothesis

 $H_2: X_1, \ldots, X_d$ are pairwise independent,

with $H_d \Rightarrow H_2$, but not vice versa.

(Testing for H_2 amounts to simultaneously testing $\binom{d}{2}$ different sub-hypotheses of H_{d} .)

Heuristic motivation:

- If X is Gaussian, then $H_2 \Leftrightarrow H_d$ (Schott, Biometrika 2005; Cai and Liang, AoS, 2011; ...)
- Practically relevant alternatives from $\neg H_d$ should typically involve pairwise dependencies (*main effect of joint dependence*).

Hence, we should design test statistics that are sensitive towards deviations from H_2 .

Testing for pairwise independence in high dimensions

Bivariate association/dependence measures: Pearson Correlation, Kendall's tau, Spearman's rho, Distance covariance, ..., e.g., for $1 \le p < q \le d$,

$$\hat{r}_{p,q} := \binom{n}{2}^{-1} \sum_{1 \leq i < j \leq n} \operatorname{sign}(X_{ip} - X_{jp}) \cdot \operatorname{sign}(X_{iq} - X_{jq}).$$

 Han, Chen, Liu (Biometrika, 2017): Maximum of linear rank statistics and (squared) nondegenerate rank-based U-statistics (e.g. Kendall's τ). Test is based on a Gumbel approximation:

$$\frac{9n(n-1)}{2(2n+5)}\max_{1\leq p$$

Leung, Drton (AoS, 2018): Sum of (squared) rank-based (possibly degenerate) U-statistics (e.g. Kendall's τ). Test is based on a normal approximation:

$$\frac{9n}{2d} \Big(\sum_{1 \leq p < q \leq d} \hat{\tau}_{p,q}^2 - \frac{2(2n+5)}{9n(n-1)} \Big) \rightsquigarrow_{H_2} \mathcal{N}(0,1)$$

The tests are inconsistent for H_2 , as $\tau = 0$ does not imply bivariate independence (Yao, Shang, Shao (JRSSB, 2018): similar as Leung, Drton (2018), but with distance covariances).

Goal: try to overcome the shortcomings from the pairwise methods by considering the problem of testing for independence from a copula perspective.

- Quite surprisingly: there is no copula-related asymptotic theory or specific methodology for the high dimensional regime d = d(n) → ∞ (to the best of our knowledge).
- Origin of statistics for copulas: Deheuvels (1979, 1981a, 1981b) Independence testing!

Sklar's Theorem: if $\mathbf{X} = (X_1, \dots, X_d)^\top \sim F$ has continuous marginal c.d.f.s F_1, \dots, F_d , then there exists an unique copula $C : [0, 1]^d \rightarrow [0, 1]$ such that

 $F(\mathbf{x}) = C(F_1(x_1), \ldots, F_d(x_d)), \qquad \mathbf{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d.$

Moreover, $\boldsymbol{C}(\boldsymbol{u}) = \mathbb{P}(\boldsymbol{U} \leq u)$, where $U_p = F_p(X_p) \sim \text{Unif}(0,1)$ for $p = 1, \ldots, d$.

Consequence for independence testing: in case of continuous marginal c.d.f.s,

 $H_d: X_1, \ldots, X_d$ are *mutually* independent $\iff H_d: C = \prod_d$.

Here, $\Pi_d(\boldsymbol{u}) = \prod_{p=1}^d u_d$ denotes the independence copula.

For $k \in \{2, ..., d\}$, let $H_k : \begin{cases} X_1, ..., X_d \text{ are } k \text{-wise independent, i.e.,} \\ any subvector of length } k \text{ has mutual independent components.} \end{cases}$

Note that $H_d \Rightarrow \cdots \Rightarrow H_k \Rightarrow \cdots \Rightarrow H_3 \Rightarrow H_2$.

Characterization: In case of continuous marginal cdfs, we may rewrite

$$H_k: C_A = \prod_k$$
 for all $A \subset \{1, \ldots, d\}$ with $|A| = k$,

where $C_A(u) = C(u^A) = \mathbb{P}(U_p \leq u_p \text{ for all } p \in A)$ denotes the A-margin of C.

The validity of H_k may hence be assessed based on a nonparametric estimator of C.

Nonparametric estimation of C: the empirical copula

The empirical copula: Recalling $C(u) = \mathbb{P}(U_i \le u)$ with $U_{ip} = F_p(X_{ip})$ suggests to define

$$\hat{C}_n(\boldsymbol{u}) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}{\{\hat{\boldsymbol{U}}_i \leq \boldsymbol{u}\}},$$

where $\hat{U}_{ip} = \hat{F}_{np}(X_{ip}) = \frac{1}{n+1} \sum_{j=1}^{n} \mathbb{1}\{X_{jp} \leq X_{ip}\} = \frac{R_{ip}}{n+1}$, with R_{ip} the rank of X_{ip} among X_{1p}, \ldots, X_{np} .

Fixed-*d* case: \hat{C}_n is a strongly consistent estimator of any *C* as $n \to \infty$. Under smoothness conditions on *C* (Rüschendorf, 1976; ..., Segers, 2012; ...), with \mathbb{G}_C a continuous Gaussian process on $[0, 1]^d$ with covariance $\text{Cov}(\mathbb{G}_C(\boldsymbol{u}), \mathbb{G}_C(\boldsymbol{v})) = C(\boldsymbol{u} \land \boldsymbol{v}) - C(\boldsymbol{u})C(\boldsymbol{v})$,

$$\left\{\sqrt{n}(\hat{C}_n(\boldsymbol{u}) - C(\boldsymbol{u}))\right\}_{\boldsymbol{u}} \rightsquigarrow \{\mathbb{G}'_C(\boldsymbol{u})\}_{\boldsymbol{u}} = \{\mathbb{G}_C(\boldsymbol{u}) - \sum_{j=1}^d \dot{C}_j(\boldsymbol{u})\mathbb{G}_C(\boldsymbol{u}^j)\}_{\boldsymbol{u}} \quad \text{ in } (\ell^{\infty}([0,1]^d), \|\cdot\|_{\infty})$$

Testing for independence of a subvector X_A : use $S_{n,A} = \|\sqrt{n}((\hat{C}_n)_A - \Pi_A)\| \rightsquigarrow_H \|(\mathbb{G}'_{\Pi})_A\|$. However, the weak limits will be dependent, which complicates aggregation over different sets A.

For a real-valued function H on $[0,1]^d$, the mapping $H \mapsto \left(\mathcal{M}_A(H)\right)_{A \subset \{1,\ldots,d\}: 2 < |A| < d}$ with

$$\mathcal{M}_{A}(H)(\boldsymbol{u}) = \sum_{B \subset A} (-1)^{|A \setminus B|} H(\boldsymbol{u}^{B}) \prod_{j \in A \setminus B} u_{j}.$$

is called the Moebius transformation of H.

$$H_k \iff \mathcal{M}_A(C) \equiv 0 \text{ for all } A \subset \{1, \ldots, d\} \text{ with } 2 \leq |A| \leq k.$$

Significant deviations of $\mathcal{M}_A(\hat{C}_n)$ from zero indicate dependence in X_A . Assessing significance (*d* fixed):

$$\sqrt{n}\mathcal{M}_{A}(\hat{C}_{n}) = \sqrt{n}\{\mathcal{M}_{A}(\hat{C}_{n}) - \mathcal{M}_{A}(\Pi)\} = \mathcal{M}_{A}(\sqrt{n}(\hat{C}_{n} - \Pi)) \rightsquigarrow_{H} \mathcal{M}_{A}(\mathbb{G}_{\Pi}) =: \mathbb{M}_{A}(\mathbb{G}_{\Pi}) =: \mathbb{M}_{A$$

In then the fixed-d case and under H,

$$\mathbb{M}_{n,A} = \sqrt{n} \mathcal{M}_A(\hat{C}_n) \rightsquigarrow_H \mathbb{M}_A$$

Here, by a straightforward calculation,

$$\mathbb{M}_{n,\mathcal{A}} = rac{1}{\sqrt{n}}\sum_{i=1}^n \prod_{p\in\mathcal{A}} \Big(\mathbb{1}\{R_{ip}\leq (n+1)u_p\} - u_p \Big).$$

The weak convergence holds jointly in $A \subset \{2, \ldots, d\}$, and the Gaussian limit process satisfies

$$\mathsf{Cov}(\mathbb{M}_{A}(\boldsymbol{u}),\mathbb{M}_{A'}(\boldsymbol{v}))=1_{\{A=A'\}}\prod_{\rho\in A}(u_{\rho}\wedge v_{\rho}-u_{\rho}v_{\rho}).$$

The weak limits are independent over A! Aggregation by sum/max functionals should yield feasible limits (Deheuvels, 1981; Genest and Rémillard, 2004).

As in Genest and Rémillard (2004), we assess non-independence of X_A by Cramér-von Mises statistics:

$$S_{n,A}^{\mathrm{M}} = \int_{[0,1]^{|A|}} \mathbb{M}_{n,A}^{2}(\boldsymbol{u}) \, \mathrm{d}\Pi_{A}(\boldsymbol{u}) \rightsquigarrow_{H} \int_{[0,1]^{|A|}} \mathbb{M}_{A}^{2}(\boldsymbol{u}) \, \mathrm{d}\Pi_{A}(\boldsymbol{u}).$$

After a slight redefinition of $\mathbb{M}_{n,A}$ (such that the process is centred), we obtain the representation

$$S_{n,A}^{\mathrm{M}} = \frac{1}{n} \sum_{i,j=1}^{n} \prod_{p \in A} I_{i,j}^{(p)}$$

where

$$I_{i,j}^{(p)} = \frac{2n+1}{6n} + \frac{R_{ip}(R_{ip}-1)}{2n(n+1)} + \frac{R_{jp}(R_{jp}-1)}{2n(n+1)} - \frac{\max(R_{ip},R_{jp})}{n+1}$$

Deviations of H_k will be measured by sum aggregation (akin to Leung and Drton (2018) for k = 2):

$$T_n(k) = \sum_{\substack{A \subset \{1,\ldots,d\} \ |A|=k}} S^{\mathrm{M}}_{n,A}, \qquad 2 \leq k \leq d.$$

Towards asymptotics of sum aggregation

The heuristics from the fixed d case suggest a (joint) normal approximation for

$$T_n(k) = \sum_{\substack{A \subset \{1, \dots, d\} \\ |A| = k}} \|\mathbb{M}_{n,A}\|_{L^2([0,1]^k)}^2 = \sum_{\substack{A \subset \{1, \dots, d\} \\ |A| = k}} S_{n,A}^{\mathrm{M}} = \sum_{\substack{A \subset \{1, \dots, d\} \\ |A| = k}} \frac{1}{n} \sum_{\substack{i, j = 1 \\ i, j = 1}}^n \prod_{p \in A} I_{i,j}^{(p)}, \quad 2 \le k \le d.$$

Proposition (Bücher and P., 2024)

Under H_k , we have, for all $A \subset \{1, \ldots, d\}$ with |A| = k,

$$\mu_n(k) := \mathbb{E}[S_{n,A}^{M}] = \left(\frac{1}{6} - \frac{1}{6n}\right)^k + (n-1)\left(\frac{-1}{6n}\right)^k,$$

$$\sigma_n^2(k) := \operatorname{Var}(S_{n,A}^{M}) \sim \frac{2}{90^k}.$$

Explicit formulas for $\sigma_n^2(k)$ are available for $k \in \{2, 3\}$.

Weak convergence of $T_n(k)$

Introduce scaling sequences:

$$T_n(k) := \sum_{|A|=k} \|\mathbb{M}_{n,A}\|^2_{L^2([0,1]^k)}, \quad \nu_n(k) := \binom{d}{k} \mu_n(k), \qquad \overline{\delta}^2_n(k) := \binom{d}{k} \sigma^2_n(k), \qquad \delta^2_n(k) := \binom{d}{k} \frac{2}{90^k}.$$

Theorem (Bücher and P., 2024)

Under H_d , if $d = d_n \rightarrow \infty$, we have

$$rac{T_n(2)-
u_n(2)}{\delta_n(2)} \xrightarrow[n
ightarrow +\infty]{d} \mathcal{N}(0,1).$$

Moreover, for fixed $m \in \{3, 4, \dots\}$, if $1 \ll d_n \ll n^{rac{1}{m-1}}$, we have

$$\left(\frac{T_n(2)-\nu_n(2)}{\delta_n(2)},\ldots,\frac{T_n(m)-\nu_n(m)}{\delta_n(m)}\right)\xrightarrow[n\to+\infty]{d}\mathcal{N}(0,1)^{\otimes (m-1)}$$

As a consequence,

$$ar{T}_n(m) = rac{1}{\sqrt{m-1}} \sum_{k=2}^m rac{T_n(k) -
u_n(k)}{\delta_n(k)} \xrightarrow[n \to +\infty]{d} \mathcal{N}(0,1).$$

The same results are true for $\overline{\delta}_n$ instead of δ_n .

~

- Straightforward test: Reject H_m iff T
 n(m) > u{1-α} = Φ⁻¹_{N(0,1)}(1 − α).
- The computational cost to calculate $\overline{T}_n(m)$ is $\Theta(mn^2d^m)$.
- No growth conditions must be put on $d = d_n$ for k = 2; this is akin to Leung and Drton (2018).
- For the weak limit result, it actually suffices to be under H_{4m-3} instead of H_d .
- The proof is based on a reduction to centred summands $\tilde{S}_{n,A}^{\mathrm{M}}$, on a reduction to summands $I_{i,j}^{(p)}$ with $i \neq j$, and finally on a central limit theorem for martingale arrays; with the sum over A restricted to max $A \leq r \in \{k, \ldots, d\}$ and with filtration $\mathcal{F}_{n,r} = \sigma(U_{ip} : 1 \leq i \leq n, 1 \leq p \leq r)$.
- Also works for $k := k_n$ for some regime derived from Stirling's approximation.

We study finite-sample rejection probabilities of the following tests:

• For $k \in \{2,3,4\}$, let \mathcal{S}_k denote the test

reject
$$H_k$$
 if $\frac{T_n(k) - \nu_n(k)}{\delta_n(k)} > 1.645 = u_{0.95}.$

• For $m \in \{3,4\}$, let \mathcal{T}_m denote the test

rejects
$$H_m$$
 if $ar{T}_n(m) = rac{1}{\sqrt{m-1}} \sum_{k=2}^m rac{T_n(k) -
u_n(k)}{\delta_n(k)} > 1.645 = u_{0.95}.$

Empirical rejections probabilities in % under mutual independence

	Asymptotic variance scaling									
Test	$n \setminus d$	4	8	16	32	64	128	256		
S_2		4.8	1.6	2.8	2.6	3.2	2.8	3.0		
S_{3}		2.2	3.6	6.2	9.4	19.8	29.0	31.4		
\mathcal{T}_{3}	16	1.6	1.2	1.6	6.0	10.0	18.6	23.8		
S_4		2.2	18.2	29.4	34.4	43.4	46.0	42.4		
Ta		2.4	11.4	24.2	30.6	39.8	45.4	42.0		
S_2		4.0	5.4	3.0	5.0	3.2	4.2	4.0		
S_{3}		5.0	4.2	5.0	10.8	15.6	19.4	27.8		
\mathcal{T}_{3}	32	4.0	3.4	2.6	6.2	8.0	9.8	19.0		
S_4		6.6	13.4	26.6	40.2	44.8	42.6	46.6		
\mathcal{T}_{4}		4.4	9.6	18.0	36.0	42.4	40.8	45.8		
S_2		6.0	5.8	6.6	4.6	4.4	3.2	4.6		
S_{3}		5.0	4.2	6.2	6.2	9.6	13.6	24.0		
\mathcal{T}_{3}	64	5.0	4.2	4.4	3.8	4.8	8.6	14.8		
\mathcal{S}_{4}		4.8	9.0	25.6	33.4	41.8	45.0	47.2		
\mathcal{T}_{4}		5.4	7.2	17.8	29.8	39.2	43.2	46.4		
S_2		6.8	4.0	5.8	4.8	5.2	5.8	4.4		
S_{3}		6.6	4.8	4.2	7.8	6.0	10.8	15.0		
\mathcal{T}_{3}	128	6.2	3.6	4.2	5.6	4.6	6.0	9.2		
\mathcal{S}_{4}		6.6	10.4	22.0	30.0	36.6	43.2	46.8		
\mathcal{T}_{4}		5.8	6.8	13.6	25.2	33.2	40.2	44.6		

• Let Z_1, Z_2, Z_3 iid standard normal random variables. Define

$$X_1 = |Z_1| \cdot \operatorname{sign}(Z_2 Z_3), \quad X_2 = Z_2, \quad X_3 = Z_3.$$

- (X_1, X_2, X_3) exhibits pairwise independence but not mutual independence.
- Generating Z₄, Z₅, Z₆ iid N(0, 1) random variables independently of (Z₁, Z₂, Z₃), we duplicate step 1 to construct X₄, X₅, X₆. Etc...
- Example d = 9

 $X_1, X_2, X_3, \quad X_4, X_5, X_6, \quad X_7, X_8, X_9$

typical triplets: $(X_1, X_2, X_3), (X_1, X_4, X_5), (X_1, X_4, X_7)$

• Out of the $\binom{d}{3}$ triplets, only d/3 are not independent, which is a proportion of $O(d^{-2})$. The tests' power should hence be decreasing in d.

		Finite variance scaling									
Test	$n \setminus d$	3	6	15	30	63	126	255			
S_2		3.6	6.8	5.2	4.6	4.0	7.0	2.8			
\mathcal{S}_{3}	16	16.6	23.4	26.4	29.4	32.4	33.8	53.4			
\mathcal{T}_{3}		12.6	13.2	15.0	20.0	24.2	27.6	22.4			
S_2		2.2	4.8	5.0	3.6	4.2	5.4	2.4			
S_{3}	32	82.4	57.6	39.8	34.2	36.2	33.6	98.8			
\mathcal{T}_{3}		45.8	32.6	22.2	20.4	24.2	24.4	98.2			
S_2		2.2	5.2	3.6	3.8	4.6	6.8	4.2			
\mathcal{S}_{3}	64	100.0	100.0	84.8	63.8	46.2	37.2	100.0			
\mathcal{T}_{3}		100.0	90.4	60.6	41.6	30.8	26.6	100.0			
S_2		0.8	3.6	4.2	4.0	5.0	4.8	3.4			
\mathcal{S}_{3}	128	100.0	100.0	100.0	99.2	85.6	62.4	100.0			
\mathcal{T}_{3}		100.0	100.0	99.2	91.8	66.8	46.4	100.0			

Thank you!

Fixed d:

- P. Deheuvels (1981). An asymptotic decomposition for multivariate distribution-free tests of independence. Journal of Multivariate Analysis 11, 102–113.
- C. Genest and B. Rémillard (2004). Tests of independence and randomness based on the empirical copula process. Test 13, 335–370.

Increasing d:

- D. Leung. and M. Drton (2018). Testing independence in high dimensions with sums of rank correlations. Annals of Statistics 46, 280–307.
- ▷ F. Han, S. Chen and H. Liu (2017). Distribution-free tests of independence in high dimensions. *Biometrika* 104, 813–828.
- S. Yao, X. Zhang and X. Shao (2018). Testing mutual independence in high dimension via distance covariance. Journal of the Royal Statistical Society Series B (Statistical Methodology) 80, 455–480.

This talk:

A. Bücher and C. Pakzad (2024). Testing for independence in high dimensions based on empirical copulas. Annals of Statistics.